If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+63x-105=0
a = 3; b = 63; c = -105;
Δ = b2-4ac
Δ = 632-4·3·(-105)
Δ = 5229
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5229}=\sqrt{9*581}=\sqrt{9}*\sqrt{581}=3\sqrt{581}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(63)-3\sqrt{581}}{2*3}=\frac{-63-3\sqrt{581}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(63)+3\sqrt{581}}{2*3}=\frac{-63+3\sqrt{581}}{6} $
| 3(2y+1)=5(y+2) | | 10=11-1/10x | | 1,3x-3,5x=11·(-0,5) | | 95=(9/5)c+32 | | 7-8k=-21 | | 6x-7x=3,5·(-1)+4 | | 6x-7x=3,5×(-1)+4 | | -5/9v=30 | | 4/5y+3=1/5+6 | | 150m-75m+52525=56375-200m | | X+1/9x=4 | | 3x+1/4x=6 | | x2=+8x+16 | | 4x-18=38 | | 6w-7=4w+25 | | 8q-2=3q-18 | | 3✓x-1=2 | | x2=3x-28=0 | | (x+2)/2=(-1) | | 7x^2-38x+26=0 | | 7x^2-38x+27=0 | | 7-20e=-8 | | 14=5-6w | | 2y+4(2)=64 | | 17+4a=7 | | 2x–12=5 | | 11=14+6k | | -4+6h=16 | | 7-2p=10 | | 2t-4/5=40 | | 14n-3=5 | | 3+10y=5 |